YouTube Channels: Maths 24 X 7 By R. K. Paliwal Sir Maths 24 X 7 By Paliwal Sir www. mathspaliwalsir.com

Exercise 6.1

1. Fill in the blanks using the correct word given in brackets:

(i) All circles are ...similar.... (Congruent, similar)

(ii) All squares are ...similar... (similar, congruent)

(iii) All ... equilateral...triangles are similar. (Isosceles, equilateral)

(iv) Two polygons of the same number of sides are similar, if

(a) their corresponding angles are ...equal...and

(b) their corresponding sides are ...proportional... (equal, proportional)

2. Give two different examples of pair of (i) similar figures. (ii) non-similar figures.

Sol. (i) similar figures

1. Two equilateral triangles with sides 4cm and 6cm

2. two squares with sides 3cm and 5cm

1

Sol. The given quadrilaterals are not similar.

2. E and F are points on the sides PQ and PR respectively of a \triangle PQR. For each of the following cases, state whether EF||QR: (i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm Sol. Given: In \triangle PQR, PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm, FR = 2.4 cm, To state: whether EF||QR or not. Proof: Here, $\frac{PE}{EQ} = \frac{3.9}{3} = \frac{13}{10}$ And $\frac{PF}{FR} = \frac{3.6}{2.4} = \frac{3}{2}$ Here $\frac{PE}{EQ} \neq \frac{PF}{FR}$ \therefore EF is not parallel to QR.

6. In Fig. A, B and C are points on OP, OQ and OR respectively such that AB || PQ and AC || PR. Show that BC || QR. Sol. Given: In \triangle PQR, A, B and C are points on OP, OQ and OR respectively such that AB || PQ and AC || PR To prove: BC || QR.

8. Using Theorem 6.2, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. Sol. Given: D is the mid-point of AB and DE To prove: DE || BC

10. The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{AO}{BO} = \frac{CO}{DO}$. Show that ABCD is a trapezium. Sol. Given: The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{AO}{BO} = \frac{CO}{DO}$ or $\frac{AO}{CO} = \frac{BO}{DO}$ YouTube Channels: Maths 24 X 7 By R. K. Paliwal Sir Maths 24 X 7 By Paliwal Sir www. mathspaliwalsir.com

To prove: AB || DC or ABCD is a trapezium.

Construction: Draw a line EO || AB passing through Q

Proof: In \triangle ABD, EO||AB

 $\Rightarrow \frac{AE}{DE} = \frac{BO}{DO}$ [By B.P. theorem] But, $\frac{AO}{CO} = \frac{BO}{DO}$

AE AO

$$\Rightarrow \frac{1}{DE} = \frac{1}{CO}$$

 \Rightarrow EO || DC [By the converse of B. P. theorem]

But EO || AB [By construction]

$$\Rightarrow$$
 AB \parallel CD

: ABCD is a trapezium. Proved.

h Q F S

Exercise: 6.3

1. State which pairs of triangles in Fig. 6.34 are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

Sol. (i) In \triangle ABC and \triangle PQR $\angle A = \angle P$ [\because each 60°] $\angle B = \angle Q$ [\because each 80°] $\angle C = \angle R$ [\because each 40°] $\therefore \triangle$ ABC $\sim \triangle$ PQR [AAA similarity] (ii) In \triangle ABC and \triangle QRP $\frac{AB}{QR} = \frac{2}{4} = \frac{1}{2}$ $\frac{BC}{RP} = \frac{2.5}{5} = \frac{1}{2}$, And $\frac{CA}{PQ} = \frac{3}{6} = \frac{1}{2}$ Here $\frac{AB}{QR} = \frac{BC}{RP} = \frac{CA}{PQ} = \frac{1}{2}$ each $\therefore \triangle$ ABC $\sim \triangle$ QRP [SSS similarity]

8

 $\therefore \angle DOC = 55^\circ$, $\angle DCO = 55^\circ$ and $\angle OAB = 55^\circ$ Ans.

3. Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at the point O. Using a similarity criterion for two triangles, show that $\frac{OA}{OC} = \frac{OB}{OD}$.

Sol. Given: In trapezium ABCD, AB || DC and diagonals AC and BD intersect each other at the point O.

To prove: $\frac{OA}{OC} = \frac{OB}{OD}$ Proof: In \triangle BOA and \triangle DOC

 $\angle BOA = \angle DOC$ [Vertically opposites angles]

 $\angle ABO = \angle CDO$ [Alternate interior angles]

 $\angle BAO = \angle DCO$ [Alternate interior angles] $\therefore \triangle BOA \sim \triangle DOC$

 $\Rightarrow \frac{OA}{OA} - \frac{OB}{OB}$

$$\Rightarrow \frac{1}{OC} = \frac{1}{OD}$$

[·· Corresponding parts of similar triangles are proportional]

YouTube Channels: Maths 24 X 7 By R. K. Paliwal Sir 🎴 Maths 24 X 7 By Paliwal Sir www. mathspaliwalsir.com

4. In figure, $\frac{QR}{OS} = \frac{QT}{PR}$ and $\angle 1 = \angle 2$. Show that $\triangle PQS \sim \triangle TQR$. Sol. Given: $\frac{QR}{QS} = \frac{QT}{PR}$ and $\angle 1 = \angle 2$ To prove: \triangle PQS $\sim \triangle$ TQR **Proof:** In \triangle PQR, $\angle PQR = \angle PRQ$ $\therefore PQ = PR \dots (1)$ Given that, $\frac{QR}{QS} = \frac{QT}{PR}$ $\Rightarrow \frac{QR}{OS} = \frac{QT}{OP}$ [From (i) PQ = PR]..... (2) \therefore In \bigtriangleup PQS and \bigtriangleup TQR $\frac{QR}{OS} = \frac{QT}{O^P}$ [From (2)] $\angle Q = \angle Q$ [Common] $\therefore \triangle PQS \sim \triangle TQR$ [SAS similarity]

5. S and T are points on sides PR and QR of \triangle PQR such that $\angle P = \angle RTS$. Show that \triangle RPQ $\sim \triangle$ RTS. Sol. Given: In \triangle PQR, \angle P = \angle RTS To prove: $\triangle RPQ \sim \triangle RTS$ **Proof:** In \triangle RPQ and \triangle RST, $\angle RTS = \angle QPS$ [Given] $\angle R = \angle R$ [Common] $\therefore \triangle RPQ \sim \triangle RTS$ [AA similarity]

6. In Figure, if \triangle ABE $\cong \triangle$ ACD, show that \triangle ADE $\sim \triangle$ ABC. Sol. Given: \triangle ABE $\cong \triangle$ ACD. To prove: $\triangle ADE \sim \triangle ABC$ **Proof:** Since, \triangle ABE $\cong \triangle$ ACD. $\therefore AE = AD [c.p.c.t.]$ Or, AD = AE....(i)and, AB = AC [c.p.c.t.](ii) \therefore In \triangle ADE and \triangle ABC $\frac{AD}{AB} = \frac{AE}{AC}$ [divide (i) by (ii)] and $\angle A = \angle A$ [Common] $\therefore \triangle ADE \sim \triangle ABC [SAS similarity]$

7. In Figure, altitudes AD and CE of \triangle ABC intersect each other at the point P. Show that: (i) \triangle AEP $\sim \triangle$ CDP (ii) \triangle ABD $\sim \triangle$ CBE (iii) \triangle AEP $\sim \triangle$ ADB (iv) \triangle PDC $\sim \triangle$ BEC Sol. (i) In \triangle AEP and \triangle CDP, \angle APE = \angle CPD [Vertically Opposite Angles] \angle AEP = \angle CDP [Each 90°] $\therefore \triangle$ AEP $\sim \triangle$ CDP [AA similarity]

(ii) In \triangle ABD and \triangle CBE, $\angle ADB = \angle CEB$ [Each 90°] $\angle ABD = \angle CBE$ [Common] $\therefore \triangle ABD \sim \triangle CBE$ [AA similarity]

(iii) In \triangle AEP and \triangle ADB, $\angle AEP = \angle ADB$ [Each 90°] $\angle PAE = \angle DAB$ [Common] $\therefore \triangle AEP \sim \triangle ADB$ [AA similarity]

(iv) In \triangle PDC and \triangle BEC, \angle PDC = \angle BEC [Each 90°] \angle PCD = \angle BCE [Common] $\therefore \triangle$ PDC $\sim \triangle$ BEC [AA similarity]

8. E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that $\triangle ABE \sim \triangle CFB$. Sol. Given: In IIgm ABCD, E is a point on the side AD produced and BE intersects CD at F. To prove: $\triangle ABE \sim \triangle CFB$ Proof: In $\triangle ABE$ and $\triangle CFB$, $\angle A = \angle C$ [Opposite angles of parallelogram] $\angle AEB = \angle CBF$ [Alternate angles as AE || BC] $\therefore \triangle ABE \sim \triangle CFB$ [AA similarity]

YouTube Channels: Maths 24 X 7 By R. K. Paliwal Sir Paths 24 X 7 By Paliwal Sir www. mathspaliwalsir.com

(iii) In \triangle DCA and \triangle HGF, \angle ACD = \angle FGH [Proved above] \angle A = \angle F [Proved above] $\therefore \triangle$ DCA $\sim \triangle$ HGF [AA similarity]

11. In Figure, E is a point on side CB produced of an isosceles triangle ABC with AB = AC. If $AD \perp BC$ and $EF \perp AC$, prove that $\triangle ABD \sim \triangle ECF$. Sol. Given: In $\triangle ABC$, AB = AC and $AD \perp BC$ and $EF \perp AC$. To prove: $\triangle ABD \sim \triangle ECF$. Proof: Since $\triangle ABC$ is an isosceles triangle. $\Rightarrow AB = AC$ $\Rightarrow \angle ABD = \angle ECF$ In $\triangle ABD$ and $\triangle ECF$, $\angle ADB = \angle EFC$ [\because Each 90°] $\angle ABD = \angle ECF$ [Proved above] $\therefore \triangle ABD \sim \triangle ECF$ [AA similarity]

12. Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of \triangle PQR (see Figure). Show that \triangle ABC $\sim \triangle$ PQR.

Sol. Given: In \triangle ABC sides AB and BC and median AD are respectively proportional to sides PQ and QR and median PM of \triangle PQR. To prove: \triangle ABC $\sim \triangle$ PQR.

Proof: AD and PM are the median of triangle. Therefore,

 $\Rightarrow \angle ABD = \angle PQM \text{ [Corresponding angles of similar triangles]}$ In $\triangle ABC \text{ and } \triangle PQR,$ $\angle ABD = \angle PQM \text{ [Proved above]}$ $\frac{AB}{PQ} = \frac{BC}{QR}$ $\therefore \triangle ABC \sim \triangle PQR \text{ [SAS similarity]}$

13. D is a point on the side BC of a triangle ABC such that $\angle ADC = \angle BAC$. Show that $CA^2 = CB.CD$. Sol. Given: In $\triangle ABC$, $\angle ADC = \angle BAC$ To prove: $CA^2 = CB.CD$. Proof: In $\triangle ADC$ and $\triangle BAC$, $\angle ADC = \angle BAC$ [Given] $\angle ACD = \angle BCA$ [Given] $\therefore \triangle ADC \sim \triangle BAC$ [AA similarity] We know that the corresponding sides of similar triangles are proportional. Therefore, $\frac{CA}{CB} = \frac{CD}{CA}$ $\Rightarrow CA^2 = CB \times CD$

14. Sides AB and AC and median AD of a triangle ABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that $\triangle ABC \sim \triangle PQR$. Sol. Given: In $\triangle ABC$ sides AB and AC and median AD are respectively proportional to sides PQ and PR and median PM of $\triangle PQR$. i.e., $\frac{AB}{PQ} = \frac{AC}{PR} = \frac{AD}{PM}$ To prove: $\triangle ABC \sim \triangle PQR$. Construction: Produce AD and PM to E and L such that AD = DE And PM = DE. Now join BE, CE, QL and RL.

